Package: acfMPeriod 1.0.0

acfMPeriod: Robust Estimation of the ACF from the M-Periodogram

Non-robust and robust computations of the sample autocovariance (ACOVF) and sample autocorrelation functions (ACF) of univariate and multivariate processes. The methodology consists in reversing the diagonalization procedure involving the periodogram or the cross-periodogram and the Fourier transform vectors, and, thus, obtaining the ACOVF or the ACF as discussed in Fuller (1995) <doi:10.1002/9780470316917>. The robust version is obtained by fitting robust M-regressors to obtain the M-periodogram or M-cross-periodogram as discussed in Reisen et al. (2017) <doi:10.1016/j.jspi.2017.02.008>.

Authors:Higor Cotta, Valderio Reisen, Pascal Bondon and Céline Lévy-Leduc

acfMPeriod_1.0.0.tar.gz
acfMPeriod_1.0.0.zip(r-4.5)acfMPeriod_1.0.0.zip(r-4.4)acfMPeriod_1.0.0.zip(r-4.3)
acfMPeriod_1.0.0.tgz(r-4.5-any)acfMPeriod_1.0.0.tgz(r-4.4-any)acfMPeriod_1.0.0.tgz(r-4.3-any)
acfMPeriod_1.0.0.tar.gz(r-4.5-noble)acfMPeriod_1.0.0.tar.gz(r-4.4-noble)
acfMPeriod_1.0.0.tgz(r-4.4-emscripten)acfMPeriod_1.0.0.tgz(r-4.3-emscripten)
acfMPeriod.pdf |acfMPeriod.html
acfMPeriod/json (API)

# Install 'acfMPeriod' in R:
install.packages('acfMPeriod', repos = c('https://rogih.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/rogih/acfmperiod/issues

On CRAN:

Conda-Forge:

2.00 score 306 downloads 8 exports 1 dependencies

Last updated 6 years agofrom:72e44abae8. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 05 2025
R-4.5-winOKMar 05 2025
R-4.5-macOKMar 05 2025
R-4.5-linuxOKMar 05 2025
R-4.4-winOKMar 05 2025
R-4.4-macOKMar 05 2025
R-4.4-linuxOKMar 05 2025
R-4.3-winOKMar 05 2025
R-4.3-macOKMar 05 2025

Exports:CovCorMPerCovCorPerCrossPeriodogramMCrossPeriodogramMPerACFMPerioRegPerACFPerioReg

Dependencies:MASS