Package 'tsqn'

Title: Applications of the Qn Estimator to Time Series (Univariate and Multivariate)
Description: Time Series Qn is a package with applications of the Qn estimator of Rousseeuw and Croux (1993) <doi:10.1080/01621459.1993.10476408> to univariate and multivariate Time Series in time and frequency domains. More specifically, the robust estimation of autocorrelation or autocovariance matrix functions from Ma and Genton (2000, 2001) <doi:10.1111/1467-9892.00203>, <doi:10.1006/jmva.2000.1942> and Cotta (2017) <doi:10.13140/RG.2.2.14092.10883> are provided. The robust pseudo-periodogram of Molinares et. al. (2009) <doi:10.1016/j.jspi.2008.12.014> is also given. This packages also provides the M-estimator of the long-memory parameter d based on the robustification of the GPH estimator proposed by Reisen et al. (2017) <doi:10.1016/j.jspi.2017.02.008>.
Authors: Higor Cotta, Valderio Reisen, Pascal Bondon and Céline Lévy-Leduc
Maintainer: Higor Cotta <[email protected]>
License: GPL (>= 2)
Version: 1.0.0
Built: 2025-03-20 02:44:06 UTC
Source: https://github.com/rogih/tsqn

Help Index


Robust correlation matrix

Description

Computes the robust correlation matrix of the matrix x proposed by Ma and Genton (2001) using the robust scale Qn of Rousseeuw and Croux (1993).

Usage

corMatQn(x)

Arguments

x

a numeric matrix

Value

a numeric matrix

References

Ma, Y. and Genton, M. G. (2001) Highly robust estimation of dispersion matrices. Journal of Multivariate Analysis, 78, 11–36.

Rousseeuw, P. J. and Croux, C. (1993) Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88, 1273–1283.

Examples

dataset <- cbind(rnorm(100),rnorm(100))
corMatQn(dataset)

Robust correlation between the variables x and y

Description

Computes the robust correlation of x and y proposed by Ma and Genton (2001) using the robust scale Qn of Rousseeuw and Croux (1993).

Usage

corQn(x, y)

Arguments

x

a numeric vector

y

a numeric vector

Value

a numerical value with the robust correlation between x and y

References

Ma, Y. and Genton, M. G. (2001) Highly robust estimation of dispersion matrices. Journal of Multivariate Analysis, 78, 11–36.

Rousseeuw, P. J. and Croux, C. (1993) Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88, 1273–1283.

Examples

corQn(rnorm(100),rnorm(100))

Robust covariance matrix

Description

Computes the robust covariance matrix of the matrix x proposed by Ma and Genton (2001) using the robust scale Qn of Rousseeuw and Croux (1993).

Usage

covMatQn(x)

Arguments

x

a numeric matrix

Value

a numeric matrix

References

Ma, Y. and Genton, M. G. (2001) Highly robust estimation of dispersion matrices. Journal of Multivariate Analysis, 78, 11–36.

Rousseeuw, P. J. and Croux, C. (1993) Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88, 1273–1283.

Examples

dataset <- cbind(rnorm(100),rnorm(100))
covMatQn(dataset)

Robust covariance between the variables x and y

Description

Computes the robust covariance of x and y proposed by Ma and Genton (2001) using the robust scale Qn of Rousseeuw and Croux (1993).

Usage

covQn(x, y)

Arguments

x

a numeric vector

y

a numeric vector

Value

a numerical value with the robust covariance between x and y

References

Ma, Y. and Genton, M. G. (2001) Highly robust estimation of dispersion matrices. Journal of Multivariate Analysis, 78, 11–36.

Rousseeuw, P. J. and Croux, C. (1993) Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88, 1273–1283.

Examples

covQn(rnorm(100),rnorm(100))

Classical and Robust Geweke and Porter-Hudak (GPH) estimators for the long-memory parameter d of a long-range dependent stationary processes

Description

Estimate the fractional (or “memory”) parameter d of long-range dependent stationary processes by the method of Geweke and Porter-Hudak (GPH). (GPH-M) and (GPH-Qn) correspond to the estimators devised by Reisen et al. (2017) and Molinares (2009), respectively.

Usage

GPH_estimate(series, bandw.exp = 0.7, method = "GPH")

Arguments

series

univariate time series

bandw.exp

the bandwidth used in the regression equation

method

character string giving the type of GPH to be computed. Allowed values are "GPH" (the default), "GPH-M" or "GPH-Qn".

Value

d GPH estimate

sd.as asymptotic standard deviation

sd.reg standard error deviation

Author(s)

Valderio Reisen, Céline Lévy-Leduc and Higor Cotta.

References

Reisen, V. A. and Lévy-Leduc, C. and Taqqu, M. (2017) An M-estimator for the long-memory parameter. To appear in Journal of Statistical Planning and Inference.

Molinares, F. F. and Reisen, V. A., and Cribari-Neto, F. (2009) Robust estimation in long-memory processes under additive outliers. Journal of Statistical Planning and Inference, 139, 2511–2525. #' @references Geweke, J. and Porter-Hudak, S. (1983) The estimation and application of long memory time series models. Journal of Time Series Analysis, 4, 221–238.

Examples

library(fracdiff)
simseries <- fracdiff.sim(1500, d = 0.3)
GPH_estimate(simseries$series,method="GPH")$d
## Not run: 
GPH_estimate(simseries$series,method="GPH-Qn")$d
GPH_estimate(simseries$series,method="GPH-M")$d

## End(Not run)

Robust M-periodogram

Description

This function computes the robust M-periodogram proposed by Reisen et al. (2017).

Usage

PerioMrob(series)

Arguments

series

univariate time series

Value

a numeric vector containing the robust estimates of the spectral density

Author(s)

Valderio Reisen, Céline Lévy-Leduc and Higor Cotta.

References

Reisen, V. A. and Lévy-Leduc, C. and Taqqu, M. (2017) An M-estimator for the long-memory parameter. To appear in Journal of Statistical Planning and Inference.

Geweke, J. and Porter-Hudak, S. (1983) The estimation and application of long memory time series models. Journal of Time Series Analysis, 4, 221–238.

Examples

PerioMrob(ldeaths)

Robust periodogram based on the Robust ACF

Description

Computes the robust pseudo-periodogram of Molinares et al (2009) based on the robust ACF by Ma and Genton (2000).

Usage

PerQn(x, window = "truncated", bandw.rob = 0.7)

Arguments

x

univariate time series

window

character string giving the type of the window. Allowed values are "truncated" (the default) or "NULL".

bandw.rob

is a numeric value giving the truncation point.

Value

a numeric vector containing the values of the robust periodogram proposed by Molinares (2009).

Author(s)

Valderio Reisen and Higor Cotta

References

Molinares, F. F. and Reisen, V. A., and Cribari-Neto, F. (2009) Robust estimation in long-memory processes under additive outliers. Journal of Statistical Planning and Inference, 139, 2511–2525.

Ma, Y. and Genton, M. G. (2000) Highly robust estimation of the autocovariance function. Journal of Time Series Analysis, 21, 663–684.

Examples

PerQn(ldeaths)

Plot Robust Autocovariance and Robust Autocorrelation Functions

Description

Plot method for objects of class "robacf".

Usage

## S3 method for class 'robacf'
plot(x, type = "h", xlab = "Lag", ylab = NULL,
  ylim = NULL, main = NULL, max.mfrow = 6, ask = Npgs > 1 &&
  dev.interactive(), mar = if (nser > 2) c(3, 2, 2, 0.8) else par("mar"),
  oma = if (nser > 2) c(1, 1.2, 1, 1) else par("oma"), mgp = if (nser > 2)
  c(1.5, 0.6, 0) else par("mgp"), xpd = par("xpd"), cex.main = if (nser > 2)
  1 else par("cex.main"), verbose = getOption("verbose"), ...)

Arguments

x

an object of class "robacf".

type

the type of plot to be drawn, default to histogram like vertical lines.

xlab

the x label of the plot.

ylab

the y label of the plot.

ylim

numeric of length 2 giving the y limits for the plot.

main

overall title for the plot.

max.mfrow

positive integer; for multivariate x indicating how many rows and columns of plots should be put on one page, using par(mfrow = c(m,m))(see par).

ask

logical; if TRUE, the user is asked before a new page is started.

mar, oma, mgp, xpd, cex.main

graphics parameters as in par(*), by default adjusted to use smaller than default margins for multivariate x only.

verbose

logical. Should R report extra information on progress?

...

graphics parameters to be passed to the plotting routines.

Value

None

Contributions

plot.acf (stats) - R Core

Examples

robacf(cbind(ldeaths,mdeaths))

Robust autocorrelation or autocovariance function estimation

Description

This function computer and plots(by default) the robust estimates of the autocovariance or the autocorrelation function based on the Qn.

Usage

robacf(x, lag.max = NULL, type = c("correlation", "covariance"),
  plot = TRUE, na.action = na.fail, demean = TRUE, ...)

Arguments

x

a numeric vector or matrix.

lag.max

maximum lag at which to calculate the acf. Default is 10*log10(N/m) where N is the number of observations and m the number of series. Will be automatically limited to one less than the number of observations in the series.

type

character string giving the type of acf to be computed. Allowed values are "correlation" (the default) or "covariance". Accepts parcial names.

plot

logical. If TRUE (the default) the acf is plotted.

na.action

function to be called to handle missing values. na.pass can be used.

demean

logical. Should the covariances be about the sample means?

...

further arguments to be passed to plot.acf.

Value

An object of class "robacf", which is a list with the following elements:

lag A three dimensional array containing the lags at which the acf is estimated.

acf An array with the same dimensions as lag containing the estimated acf.

type The type of correlation (same as the type argument).

n.used The number of observations in the time series.

series The name of the series x.

snames The series names for a multivariate time series.

The result is returned invisibly if plot is TRUE.

Author(s)

Higor Cotta, Valderio Reisen and Pascal Bondon

References

Cotta, H. and Reisen, V. A. and Bondon, P. and Stummer, W. (2017) Robust Estimation of Covariance and Correlation Functions of a Stationary Multivariate Process. To appear in 2017 25th European Signal Processing Conference (EUSIPCO 2017).

Ma, Y. and Genton, M. G. (2000) Highly robust estimation of the autocovariance function. Journal of Time Series Analysis, 21, 663–684.

Ma, Y. and Genton, M. G. (2001) Highly robust estimation of dispersion matrices. Journal of Multivariate Analysis, 78, 11–36.

Rousseeuw, P. J. and Croux, C. (1993) Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88, 1273–1283.

Examples

data.set <- cbind(fdeaths,mdeaths)
robacf(data.set)
robacf(data.set,type="covariance",lag.max=10)

Applications of the Qn estimator to time series (univariate and multivariate)

Description

This package contains applications of the Qn estimator of Rousseeuw and Croux(1993) to univariate and multivariate Time Series in time and frequency domains. More especifically, the robust estimation of autocorrelation or autocovariance matrix functions from Ma and Genton (2000,2001) and Cotta et. al. (2017). The robust periodogram of Molinares et. al. (2009) and the M-Periodogram of Reisen et. al. (2017). The robust GPH estimator of d considering robust periodogram approach.

Details

Package: TimeSeriesQn
Type: Package
Version: 1.0
Date: 2017-03-08
License: GPL (>= 2)

Author(s)

Higor Cotta, Valderio Reisen, Pascal Bondon and Céline Lévy-Leduc

Maintainer: Higor Cotta [email protected]

References

H. Cotta, V. Reisen, P. Bondon, W. Stummer (2017): Robust Estimation of Covariance and Correlation Functions of a Stationary Multivariate Process. To appear in 2017 25th European Signal Processing Conference (EUSIPCO 2017)

V. Reisen, C. Lévy-Leduc, M. Taqqu (2017): An M-estimator for the long-memory parameter. To appear in Journal of Statistical Planning and Inference.

Y. Ma, M. Genton (2000): Highly robust estimation of the autocovariance function. Journal of Time Series Analysis, 21, 663–684.

Y. Ma, M. Genton (2001): Highly robust estimation of dispersion matrices. Journal of Multivariate Analysis, 78, 11–36.

P. J. Rousseuw, C. Croux (1993): Alternatives to the median absolute deviation.,Journal of the American Statistical Association, Taylor & Francis Group, 88, n. 424, p. 1273–-1283.

Examples

x <- rnorm(1000,10,1)
y <- rnorm(1000,100,10)
xy <- cbind(x,y)

covQn(x,y)
corQn(x,y)
covMatQn(xy)
corMatQn(xy)


robacf(x)

dataset <- cbind(fdeaths,mdeaths)
robacf(dataset)
robacf(dataset,type="covariance",lag.max=10)

PerQn(ldeaths)

library(fracdiff)
simseries <- fracdiff.sim(1500, d = 0.3)
GPH_estimate(simseries$series,method="GPH")$d
GPH_estimate(simseries$series,method="GPH-Qn")$d